Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
نویسندگان
چکیده
Pseudomonas cepacia G4 is capable of cometabolic degradation of trichloroethylene (TCE) if the organism is grown on certain aromatic compounds. To obtain more insight into the kinetics of TCE degradation and the effect of TCE transformation products, we have investigated the simultaneous conversion of toluene and TCE in steady-state continuous culture. The organism was grown in a chemostat with toluene as the carbon and energy source at a range of volumetric TCE loading rates, up to 330 mumol/liter/h. The specific TCE degradation activity of the cells and the volumetric activity increased, but the efficiency of TCE conversion dropped when the TCE loading was elevated from 7 to 330 mumol/liter/h. At TCE loading rates of up to 145 mumol/liter/h, the specific toluene conversion rate and the molar growth yield of the cells were not affected by the presence of TCE. The response of the system to varying TCE loading rates was accurately described by a mathematical model based on Michaelis-Menten kinetics and competitive inhibition. A high load of 3,400 mumol of TCE per liter per h for 12 h caused inhibition of toluene and TCE conversion, but reduction of the TCE load to the original nontoxic level resulted in complete recovery of the system within 2 days. These results show that P. cepacia can stably and continuously degrade toluene and TCE simultaneously in a single-reactor system without biomass retention and that the organism is more resistant to high concentrations and shock loadings of TCE than Methylosinus trichosporium OB3b.
منابع مشابه
Effect of trichloroethylene on the competitive behavior of toluene-degrading bacteria.
The influence of trichloroethylene (TCE) on a mixed culture of four different toluene-degrading bacterial strains (Pseudomonas putida mt-2, P. putida F1, P. putida GJ31, and Burkholderia cepacia G4) was studied with a fed-batch culture. The strains were competing for toluene, which was added at a very low rate (31 nmol mg of cells [dry weight] h). All four strains were maintained in the mixed c...
متن کاملCometabolic Degradation Kinetics of Trichloroethylene Based on Toluene Enhancement by Encapsulated Burkholderia cepacia G4
The ability of encapsulated Burkholderia cepacia G4 (ATCC 53617) for trichloroethylene (TCE) degradation (1.5, 5, 10, and 20mg/L) in the presence of toluene (10 and 60mg/L) as enhancement substrate was evaluated experimentally. Burkholderia cepacia G4 cultures were encapsulated in cylindrical pellets (4mm in diameter and 4mm in height (preferred)) using polyethylene glycol (PEG). Higher transfo...
متن کاملCometabolic degradation of TCE vapors in a foamed emulsion bioreactor.
Effective cometabolic biodegradation of trichloroethylene (TCE) vapors in a novel gas-phase bioreactor called the foamed emulsion bioreactor (FEBR) was demonstrated. Toluene vapors were used as the primary growth substrate for Burkholderia cepacia G4 which cometabolically biodegraded TCE. Batch operation of the reactor with respect to the liquid feed showed a drastic decrease of TCE and toluene...
متن کاملSelection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene.
Tn5 insertion mutants of Pseudomonas cepacia G4 that were unable to degrade trichloroethylene (TCE), toluene, or phenol or to transform m-trifluoromethyl phenol (TFMP) to 7,7,7-trifluoro-2-hydroxy-6-oxo-2,4-heptadienoic acid (TFHA) were produced. Spontaneous reversion to growth on phenol or toluene as the sole source of carbon was observed in one mutant strain, G4 5223, at a frequency of approx...
متن کاملMutants of Pseudomonas cepacia G4 defective in catabolism of aromatic compounds and trichloroethylene.
Pseudomonas cepacia G4 possesses a novel pathway of toluene catabolism that is shown to be responsible for the degradation of trichloroethylene (TCE). This pathway involves conversion of toluene via o-cresol to 3-methylcatechol. In order to determine the enzyme of toluene degradation that is responsible for TCE degradation, chemically induced mutants, blocked in the toluene ortho-monooxygenase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 60 9 شماره
صفحات -
تاریخ انتشار 1994